This table gives the best packing densities known for congruent spheres in Euclidean spaces of dimensions 1 through 48 and 56, 64, and 72, along with the best upper bounds known for the optimal packing density (the columns are explained below the table). It was originally based on Tables I.1(a) and I.1(b) in [10] and the Nebe-Sloane Catalogue of Lattices. Please let me know of any improvements that should be incorporated.

A plot of the data is available here. The data is archived here, along with explicit coordinates in up to 38 dimensions.

n Center density # Density Upper bound Ratio References
1 2−1 1 1
2 2−1·3−1/2 0.9068996821171089… 1 [26, 27, 12]
3 2−5/2 0.7404804896930610… 1 [13, 14]
4 2−3 0.6168502750680849… 0.6361073321551329 1.032 [15, 7]
5 2−7/2 0.4652576133092586… 0.5126451306253027 1.102 [16, 7]
6 2−3·3−1/2 0.3729475455820649… 0.4103032818801865 1.101 [16, 7]
7 2−4 0.2952978731457125… 0.3211471056675559 1.088 [16, 7]
8 2−4 0.2536695079010480… 1 [16, 30]
9 2−9/2 0.1457748758081711… 0.1911204152968963 1.312 [5, 7]
10 2−7·5 40 0.0996157828077088… 0.1434100871082547 1.440 [3, 7]
11 2−8·32 72 0.0662380270098011… 0.1067252934567631 1.612 [20, 7]
12 3−3 0.0494541766242440… 0.0797117710668987 1.612 [11, 7]
13 2−8·32 72 0.0320142921603497… 0.0601644380983860 1.880 [20, 7]
14 2−4·3−1/2 0.0216240960824471… 0.0450612211935181 2.084 [18, 7]
15 2−9/2 0.0168575706567626… 0.0337564432797899 2.003 [2, 7]
16 2−4 0.0147081643974308… 0.0249944093845237 1.700 [2, 7]
17 2−4 0.0088113191823211… 0.0184640903350649 2.096 [18, 1]
18 2−18·39 512 0.0061678981253312… 0.0134853404450862 2.187 [4, 1]
19 2−7/2 0.0041208062797686… 0.0098179551395438 2.383 [18, 1]
20 2−31·710 4 0.0033945814107126… 0.0071270536033763 2.100 [28, 1]
21 2−5/2 0.0024658847115024… 0.0051596603948176 2.093 [18, 1]
22 2−23·3−21/2·1111 3 0.0024510340441211… 0.0037259419689206 1.521 [9, 1]
23 2−1 0.0019053281934260… 0.0026842798864291 1.409 [19, 1]
24 1 0.0019295743094039… 1 [19, 6]
25 2−1/2 0.0006772120097731… 0.0013841907222857 2.044 [8, 1]
26 3−1/2 0.0002692200504338… 0.0009910238892216 3.682 [8, 1]
27 2−1/2 16384 0.0001575943907278… 0.0007082297958617 4.495 [29, 1]
28 1 8192 0.0001046381049248… 0.0005052542161057 4.829 [29, 1]
29 2−1/2 32768 0.0000341446469074… 0.0003598581852089 10.54 [29, 1]
30 1 8192 0.0000219153534478… 0.0002559028743732 11.68 [29, 1]
31 2−47/2·315 0.0000118377651859… 0.0001817083813917 15.35 [24, 1]
32 2−24·316 0.0000110407493088… 0.0001288432887595 11.67 [24, 1]
33 2−25·333/2 0.0000041406882896… 0.0000912356039023 22.04 Elkies (see [10, p. xx]), [1]
34 2−25·333/2 0.0000017669738891… 0.0000645221967438 36.52 Elkies (see [10, p. xx]), [1]
35 23/2 0.0000009461904151… 0.0000455743843107 48.17 [10, p. 234], [1]
36 218·3−10 0.0000006161466094… 0.0000321530553313 52.19 [17, 1]
37 25/2 0.0000003213562007… 0.0000226586900106 70.51 [10, p. xxxvii], [1]
38 23 0.0000001835874319… 0.0000159506499105 86.89 [10, p. xxxvii], [1]
39 2−41/2·316·7−1/2 0.0000001004160423… 0.0000112168687009 111.8 [8, Cor. 8], [1]
40 2−45/2·317 0.0000000784800488… 0.0000078801051697 100.5 [8, Cor. 8], [1]
41 2−43/2·317 0.0000000610716131… 0.0000055306464395 90.57 [8, Cor. 8], [1]
42 2−22·318 0.0000000498110957… 0.0000038780970907 77.86 [8, Cor. 8], [1]
43 2−45/2·319 0.0000000401571902… 0.0000027169074727 67.66 [8, Cor. 8], [1]
44 2−43·3−24·1722 4 0.0000000364088490… 0.0000019017703144 52.24 [9, 1]
45 2−44·3−24·1745/2 4 0.0000000278915432… 0.0000013300905665 47.69 [9, 1]
46 3−93/2·1323 3 0.0000000286095747… 0.0000009295151556 32.49 [9, 1]
47 2−70·3−24·547/2·747/2 2 0.0000000221448620… 0.0000006490757338 29.32 [9, 1]
48 2−24·324 0.0000000231782953… 0.0000004529067791 19.55 [20, 1]
56 2-28·528·29-4 0.0000000000535530… 0.0000000248393710 463.9 [25, 1]
64 316 0.0000000000013260… 0.0000000013129981 990.2 [21, 22, 1]
72 236 0.0000000000001458… 0.0000000000673580 461.8 [23, 1]
n Number of dimensions.
Center density Number of spheres per unit volume in space, assuming unit radius.
# Number of spheres per unit cell in an underlying (Bravais) lattice; omitted if 1.
Density Packing density, i.e., πn/2/Γ(n/2+1) times the center density.
Upper bound Best upper bound known for the optimal packing density, rounded up.
Ratio Ratio of the upper bound to the known density, rounded up.

References

  1. N. Afkhami-Jeddi, H. Cohn, T. Hartman, D. de Laat, and A. Tajdini, High-dimensional sphere packing and the modular bootstrap, J. High Energy Phys. (2020), Paper No. 66, 44 pp., doi:10.1007/jhep12(2020)066, arXiv:2006.02560.
  2. E. S. Barnes and G. E. Wall, Some extreme forms defined in terms of Abelian groups, J. Austral. Math. Soc. 1 (1959), 47–63, doi:10.1017/S1446788700025064.
  3. M. R. Best, Binary codes with a minimum distance of four, IEEE Trans. Inform. Theory 26 (1980), 738–742, doi:10.1109/TIT.1980.1056269.
  4. J. Bierbrauer and Y. Edel, Dense sphere packings from new codes, J. Algebraic Combin. 11 (2000), 95–100, doi:10.1023/A:1008733715001.
  5. T. W. Chaundy, The arithmetic minima of positive quadratic forms (I), Quart. J. Math. Oxford Ser. 17 (1946), 166–192, doi:10.1093/qmath/os-17.1.166.
  6. H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska, The sphere packing problem in dimension 24, Ann. of Math. (2) 185 (2017), 1017–1033, doi:10.4007/annals.2017.185.3.8, arXiv:1603.06518.
  7. H. Cohn, D. de Laat, and A. Salmon, Three-point bounds for sphere packing, preprint, 2022, arXiv:2206.15373.
  8. J. H. Conway and N. J. A. Sloane, Laminated lattices, Ann. of Math. (2) 116 (1982), 593–620, doi:10.2307/2007025.
  9. J. H. Conway and N. J. A. Sloane, The antipode construction for sphere packings, Invent. Math. 123 (1996), 309–313, doi:10.1007/s002220050028.
  10. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third edition, Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York, 1999, doi:10.1007/978-1-4757-6568-7.
  11. H. S. M. Coxeter and J. A. Todd, An extreme duodenary form, Canad. J. Math. 5 (1953), 384–392, doi:10.4153/cjm-1953-043-4.
  12. L. Fejes [Tóth], Über einen geometrischen Satz, Math. Z. 46 (1940), 83–85, doi:10.1007/BF01181430.
  13. T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185, doi:10.4007/annals.2005.162.1065.
  14. T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, L. T. Hoang, C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, Q. T. Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, T. H. A. Ta, N. T. Tran, T. D. Trieu, J. Urban, K. Vu, and R. Zumkeller, A formal proof of the Kepler conjecture, Forum Math. Pi 5 (2017), e2, 29 pp., doi:10.1017/fmp.2017.1, arXiv:1501.02155.
  15. A. Korkine and G. Zolotareff, Sur les formes quadratiques positives quaternaires, Math. Ann. 5 (1872), 581–583, doi:10.1007/BF01442912.
  16. A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. Ann. 6 (1873), 366–389, doi:10.1007/BF01442795.
  17. F. R. Kschischang and S. Pasupathy, Some ternary and quaternary codes and associated sphere packings, IEEE Trans. Inform. Theory 38 (1992), 227–246, doi:10.1109/18.119683.
  18. J. Leech, Some sphere packings in higher space, Canadian J. Math. 16 (1964), 657–682, doi:10.4153/CJM-1964-065-1.
  19. J. Leech, Notes on sphere packings, Canadian J. Math. 19 (1967), 251–267, doi:10.4153/CJM-1967-017-0.
  20. J. Leech and N. J. A. Sloane, Sphere packings and error-correcting codes, Canadian J. Math. 23 (1971), 718–745, doi:10.4153/CJM-1971-081-3.
  21. G. Nebe, Some cyclo-quaternionic lattices, J. Algebra 199 (1998), 472–498, doi:10.1006/jabr.1997.7163.
  22. G. Nebe, Construction and investigation of lattices with matrix groups, Integral quadratic forms and lattices (Seoul, 1998), 205–219, Contemp. Math. 249, Amer. Math. Soc., Providence, RI, 1999, doi:10.1090/conm/249/03759.
  23. G. Nebe, An even unimodular 72-dimensional lattice of minimum 8, J. Reine Angew. Math. 673 (2012), 237–247, doi:10.1515/crelle.2011.175, arXiv:1008.2862.
  24. H.-G. Quebbemann, A construction of integral lattices, Mathematika 31 (1984), 137–140, doi:10.1112/S0025579300010731.
  25. T. Shioda, Mordell-Weil lattices and sphere packings, Amer. J. Math. 113 (1991), 931–948, doi:10.2307/2374791.
  26. A. Thue, Om nogle geometrisk taltheoretiske Theoremer, Forhdl. Skand. Naturforsk. 14 (1892), 352–353.
  27. A. Thue, Über die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene, Norske Vid. Selsk. Skr. 1 (1910), 1–9.
  28. A. Vardy, A new sphere packing in 20 dimensions, Invent. Math. 121 (1995), 119–133, doi:10.1007/BF01884292.
  29. A. Vardy, Density doubling, double-circulants, and new sphere packings, Trans. Amer. Math. Soc. 351 (1999), 271–283, doi:10.1090/S0002-9947-99-02169-8.
  30. M. S. Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2) 185 (2017), 991–1015, doi:10.4007/annals.2017.185.3.7, arXiv:1603.04246.