This web page deals only with small codes. For a more extensive table, see https://spherical-codes.org.
The spherical code problem asks how to arrange N points on the surface of the unit sphere Sn-1 in n dimensions so as to maximize the distance between the nearest pair of points. This problem is also known as the Tammes problem, due to its origins in botany [29]. The following table shows the best constructions known with up to to 32 points; it omits configurations with at most 2n points in n dimensions, for which the exact answer is known [23], as well as the trivial case of two dimensions. Please let me know of any improvements to these records.
The table lists the cosine of the minimal angular distance (i.e., the inner product of the closest points) and the number of rattlers (i.e., points with no neighbors at the minimal distance). Following the example of [3], it also includes the minimal polynomial of this inner product in many cases; the minimal polynomials I have computed that are too large to fit in this table are available here. The cosines are rounded up, so that codes achieving this bound provably exist. When a minimal polynomial is listed, I have checked that there exists a code achieving this exact value. Entries that are known to be optimal are marked with ∗.
All of this data is available from https://hdl.handle.net/1721.1/142661, including coordinates for these codes. If you cite this table, please refer to the data set, not this web page.
Plots of the data are available in terms of minimal angle and density.
Table of spherical codes (N points in n dimensions)
n | N | Cosine of minimal angle | Rattlers | Minimal polynomial | References |
---|---|---|---|---|---|
∗ 3 | 7 | 0.21013831273060308486576530161854 | 3x3 – 9x2 – 3x + 1 | [26] | |
∗ 3 | 8 | 0.26120387496374144251476820691706 | 7x2 + 2x – 1 | [26] | |
∗ 3 | 9 | 0.33333333333333333333333333333334 | 3x – 1 | [26] | |
∗ 3 | 10 | 0.40439432521625075684622475072579 | 7x3 – 4x2 – 2x + 1 | [26, 7] | |
∗ 3 | 11 | 0.44721359549995793928183473374626 | 5x2 – 1 | [26, 7] | |
∗ 3 | 12 | 0.44721359549995793928183473374626 | 5x2 – 1 | [9] | |
∗ 3 | 13 | 0.54263648682963846368144007679523 | degree 8 | [26, 21] | |
∗ 3 | 14 | 0.56395030036050516749088520575670 | 4x4 – 2x3 + 3x2 – 1 | [26, 22] | |
3 | 15 | 0.59260590292507377809642492233276 | 13x5 – x4 + 6x3 + 2x2 – 3x – 1 | [26, 13] | |
3 | 16 | 0.61229461648269661600605156530452 | 23x6 + 6x5 + 5x4 + 4x3 – 3x2 – 2x – 1 | [26] | |
3 | 17 | 0.62809441507002164642659266364200 | degree 10 | [7] | |
3 | 18 | 0.64869583222311652907905517143837 | degree 11 | [30] | |
3 | 19 | 0.67311688756005104893098993946251 | 1 | degree 75 | [15] |
3 | 20 | 0.67647713812965145206767190546124 | 2 | 21x3 – 9x2 – 5x + 1 | [32] |
3 | 21 | 0.69949843106637709573776394272263 | [13] | ||
3 | 22 | 0.71030625857969039075297000237262 | degree 18 | [13] | |
3 | 23 | 0.72284698486839966689606899351518 | 1 | [31] | |
∗ 3 | 24 | 0.72307846833350853703234480939452 | 7x3 + x2 – 3x – 1 | [24] | |
3 | 25 | 0.74739862857799274075800073210958 | degree 89 | [13] | |
3 | 26 | 0.75427817712004151970111096057049 | 2 | degree 101 | [13] |
3 | 27 | 0.75838921077657748391083424965931 | degree 24 | [30] | |
3 | 28 | 0.77323026233796340734575992835035 | 1 | [13] | |
3 | 29 | 0.78028141594871705893938480666397 | 1 | [13] | |
3 | 30 | 0.78155187509498732710358610409650 | degree 29 | [5] | |
3 | 31 | 0.79111861329867495834332727354269 | degree 66 | [28] | |
3 | 32 | 0.79361661487126244036481707479245 | degree 22 | [7] | |
4 | 9 | 0.16201519961163454918243428113270 | 16x3 – 16x2 – 4x + 1 | [27] | |
∗ 4 | 10 | 0.16666666666666666666666666666667 | 6x – 1 | [18, 2] | |
4 | 11 | 0.23040556359455544173706204865074 | 8x3 – 12x2 – 2x + 1 | [27] | |
4 | 12 | 0.25000000000000000000000000000000 | 4x – 1 | [18] | |
4 | 13 | 0.30729565398102882232528869633144 | degree 9 | [27] | |
4 | 14 | 0.31951859421260363549590568166773 | degree 7 | [27] | |
4 | 15 | 0.35099217594534630329905559676410 | 36x4 – 18x3 + 10x2 – 1 | [27] | |
4 | 16 | 0.38762817712253427775854691441514 | degree 10 | [18] | |
4 | 17 | 0.41225936269326378906697367932150 | [27] | ||
4 | 18 | 0.42281941407305934402640028185634 | degree 16 | [27] | |
4 | 19 | 0.43425854591066488218653687791175 | 3x2 + x – 1 | [27] | |
4 | 20 | 0.43425854591066488218653687791175 | 3x2 + x – 1 | [27] | |
4 | 21 | 0.47138085850731791681783507846628 | degree 8 | [27] | |
4 | 22 | 0.49788413084355235628616910040615 | [27] | ||
4 | 23 | 0.50000000000000000000000000000000 | 2x – 1 | [27] | |
∗ 4 | 24 | 0.50000000000000000000000000000000 | 2x – 1 | [25, 14] | |
4 | 25 | 0.53731605665507787659607001344589 | [27] | ||
4 | 26 | 0.54078961769753707672755075220843 | degree 6 | [27] | |
4 | 27 | 0.55759135118017018253232385918274 | 3 | 794x5 + 393x4 – 344x3 – 82x2 + 6x + 1 | [27] |
4 | 28 | 0.56733880407434859617396405079452 | [27] | ||
4 | 29 | 0.57314853044836189190193776787666 | degree 58 | [27] | |
4 | 30 | 0.58423281393058512894226706121300 | [27] | ||
4 | 31 | 0.59076583858072581074772305364896 | 2 | ||
4 | 32 | 0.59572014923551345643989842209366 | 2 | [27] | |
5 | 11 | 0.13285354259858991808946447681952 | 45x3 – 25x2 – 5x + 1 | [27] | |
5 | 12 | 0.15393160503302123094881763125084 | 25x4 + 30x3 + 24x2 + 2x – 1 | [27] | |
5 | 13 | 0.18725985188285358701782399517981 | 17x3 – 5x2 – 5x + 1 | [27] | |
5 | 14 | 0.20000000000000000000000000000000 | 5x – 1 | [27] | |
5 | 15 | 0.20000000000000000000000000000000 | 5x – 1 | [27] | |
∗ 5 | 16 | 0.20000000000000000000000000000000 | 5x – 1 | [12, 16] | |
5 | 17 | 0.27047583526857362208626102246801 | 9x4 – 16x3 – 10x2 + 1 | [27] | |
5 | 18 | 0.27550174165981923838704223579799 | 484x5 – 488x4 + 97x3 + 17x2 – x – 1 | [27] | |
5 | 19 | 0.29182239902449014614857168904980 | degree 6 | [27] | |
5 | 20 | 0.29938569289912478230200302792897 | 1 | 5x3 + 13x2 – x – 1 | [27] |
5 | 21 | 0.31491695717530346284922041852029 | degree 14 | [27] | |
5 | 22 | 0.35499503416625620682992409117504 | [27] | ||
5 | 23 | 0.36977269694307633377246233586792 | 2 | [27] | |
5 | 24 | 0.37423298246516725172655168161941 | degree 10 | [27] | |
5 | 25 | 0.37962102539378266282456421792923 | [27] | ||
5 | 26 | 0.39024065950484684004435526211173 | degree 23 | [27] | |
5 | 27 | 0.40165926427641808725922803276444 | degree 15 | ||
5 | 28 | 0.40816969909292876817531302066075 | [27] | ||
5 | 29 | 0.41103443509195154800015221999063 | degree 31 | [27] | |
5 | 30 | 0.41302977612208581019088251209695 | degree 7 | [27] | |
5 | 31 | 0.43391186395954602878684987397560 | degree 20 | [27] | |
5 | 32 | 0.44183074392731126949046338768223 | degree 10 | ||
6 | 13 | 0.11307975214744721384507044810795 | 96x3 – 36x2 – 6x + 1 | [1] | |
6 | 14 | 0.13249092032347031437017906291052 | degree 13 | [33] | |
6 | 15 | 0.14494897427831780981972840747059 | 20x2 + 4x – 1 | [33] | |
6 | 16 | 0.17107142104254135250794239133672 | degree 5 | ||
6 | 17 | 0.18327433702314481857632435406165 | 400x4 + 240x3 + 16x2 – 8x – 1 | [1] | |
6 | 18 | 0.19781218860197545240607808204678 | degree 8 | [33] | |
6 | 19 | 0.20022602589120548304270384498373 | [33] | ||
6 | 20 | 0.21428571428571428571428571428572 | 14x – 3 | [33] | |
6 | 21 | 0.24285284801369170250759542313692 | [33] | ||
6 | 22 | 0.24886569945945498664968496352672 | 2 | ||
6 | 23 | 0.25000000000000000000000000000000 | 4x – 1 | [33] | |
6 | 24 | 0.25000000000000000000000000000000 | 4x – 1 | [33] | |
6 | 25 | 0.25000000000000000000000000000000 | 4x – 1 | [33] | |
6 | 26 | 0.25000000000000000000000000000000 | 4x – 1 | [33] | |
∗ 6 | 27 | 0.25000000000000000000000000000000 | 4x – 1 | [12, 16] | |
6 | 28 | 0.30000000000000000000000000000000 | 7 | 10x – 3 | [8] |
6 | 29 | 0.32784483088118687202127443197487 | 2 | ||
6 | 30 | 0.33315788629867473849158891881747 | |||
6 | 31 | 0.33333333333333333333333333333334 | 3x – 1 | [33] | |
6 | 32 | 0.33333333333333333333333333333334 | 3x – 1 | [17] | |
7 | 15 | 0.09870177627236447932802936506891 | 175x3 – 49x2 – 7x + 1 | [1] | |
7 | 16 | 0.11332087960014474124552027924541 | degree 12 | [33] | |
7 | 17 | 0.12484158381525719834719018255480 | degree 48 | ||
7 | 18 | 0.12613198362288317391722947587285 | 47x2 + 2x – 1 | [1] | |
7 | 19 | 0.15659738541709551030242683082792 | 1280x6 – 352x4 – 48x3 + 37x2 + 3x – 1 | [33] | |
7 | 20 | 0.16952084719853722593019861519182 | 23x2 + 2x – 1 | [8] | |
7 | 21 | 0.18152396080041583540526502110446 | [33] | ||
7 | 22 | 0.18274399763155681014833407039277 | 19x2 + 2x – 1 | [33] | |
7 | 23 | 0.18274399763155681014833407039277 | 19x2 + 2x – 1 | [33] | |
7 | 24 | 0.18274399763155681014833407039277 | 19x2 + 2x – 1 | [33] | |
7 | 25 | 0.21473723385459290952279854505932 | 1 | 31x2 – 2x – 1 | [33] |
7 | 26 | 0.23133143037135692995849173196346 | [33] | ||
7 | 27 | 0.24054938200924358136050178936531 | 1 | ||
7 | 28 | 0.24735665120702230944063342932200 | |||
7 | 29 | 0.24893304175249328361860798968239 | |||
7 | 30 | 0.24946828200244218150196710830501 | 2 | ||
7 | 31 | 0.25450276751476520071094915336323 | 1 | ||
7 | 32 | 0.26559569943123793674839332081547 | |||
8 | 17 | 0.08773346332333854567255804176022 | 288x3 – 64x2 – 8x + 1 | [8] | |
8 | 18 | 0.09946957270878709385964502330429 | [33] | ||
8 | 19 | 0.11140997502603998543258143242674 | degree 29 | [33] | |
8 | 20 | 0.11949686668719356518012001310428 | 224x3 + 60x2 – 2x – 1 | [33] | |
8 | 21 | 0.13060193748187072125738410345853 | 28x2 + 4x – 1 | [33] | |
8 | 22 | 0.13060193748187072125738410345853 | 28x2 + 4x – 1 | [8] | |
8 | 23 | 0.15716994198931666717945817456695 | degree 68 | [33] | |
8 | 24 | 0.15769214493936087799410602949295 | 4x4 – 4x3 – 27x2 – 2x + 1 | [33] | |
8 | 25 | 0.16433417412503162111153267794066 | degree 18 | ||
8 | 26 | 0.17265209503507043373086916730531 | degree 40 | ||
8 | 27 | 0.17985645705828421512952134000393 | 1 | degree 32 | |
8 | 28 | 0.18115842002150127258095821368305 | 36x4 + 24x3 – 36x2 + 1 | ||
8 | 29 | 0.18792249007615647401927839455942 | |||
8 | 30 | 0.20391627940388098449483075238404 | |||
8 | 31 | 0.21970652851628436567125139212986 | |||
8 | 32 | 0.22732545202384657669029760629103 | 95x2 – 4x – 4 | ||
9 | 19 | 0.07906715121746358947508550780826 | 441x3 – 81x2 – 9x + 1 | [8] | |
9 | 20 | 0.08706795832124714750492273563902 | 63x2 + 6x – 1 | ||
9 | 21 | 0.08706795832124714750492273563902 | 63x2 + 6x – 1 | ||
9 | 22 | 0.10901537523956808103629964436986 | 662x4 + 23x3 – 67x2 – 3x + 1 | ||
9 | 23 | 0.11427236968530968639282662571064 | degree 16 | ||
9 | 24 | 0.12713870233144916446935012832137 | |||
9 | 25 | 0.13545157071140596843926701196576 | |||
9 | 26 | 0.14666206355598451422693622189428 | |||
9 | 27 | 0.14993020007690822855843760739583 | 1 | ||
9 | 28 | 0.15018517642245795642862698510483 | 2 | ||
9 | 29 | 0.15022110482233484500666951280126 | 31x2 + 2x – 1 | ||
9 | 30 | 0.15022110482233484500666951280126 | 31x2 + 2x – 1 | ||
9 | 31 | 0.15022110482233484500666951280126 | 31x2 + 2x – 1 | ||
9 | 32 | 0.15022110482233484500666951280126 | 31x2 + 2x – 1 | [8] | |
10 | 21 | 0.07203313984214689097267814366206 | 640x3 – 100x2 – 10x + 1 | [8] | |
10 | 22 | 0.08395615471838847066948704055021 | |||
10 | 23 | 0.08685393895547971677649716451343 | |||
10 | 24 | 0.09871013349961574400220437104983 | 1 | degree 8 | |
10 | 25 | 0.10447637455518529630303057158420 | 2 | ||
10 | 26 | 0.10447765212347525953178684587436 | 2 | ||
10 | 27 | 0.12421241419098055856947587657933 | |||
10 | 28 | 0.12823868446883383035640365542200 | 92x2 – 4x – 1 | ||
10 | 29 | 0.13063429594350723450192868698071 | degree 13 | ||
10 | 30 | 0.13841879002696740381635168625651 | |||
10 | 31 | 0.14411493980324056199859132544531 | degree 64 | ||
10 | 32 | 0.14695924301669103564198244582096 | 1 | 279x4 – 420x3 + 102x2 – 1 | |
11 | 23 | 0.06620127253123946651867717228392 | 891x3 – 121x2 – 11x + 1 | [8] | |
11 | 24 | 0.07729688069488853395571677916567 | degree 54 | ||
11 | 25 | 0.08361875782883598879744264452381 | |||
11 | 26 | 0.09095710678149019861518700080992 | |||
11 | 27 | 0.09657976733774336498968777561990 | |||
11 | 28 | 0.10206207261596575409155350311275 | 4 | 96x2 – 1 | |
11 | 29 | 0.10857121222095814808547032011242 | 3 | ||
11 | 30 | 0.11111111111111111111111111111112 | 9x – 1 | ||
11 | 31 | 0.11688271662887820937338660035349 | 1 | degree 4 | |
11 | 32 | 0.12712017879076092950462557449550 | |||
12 | 25 | 0.06128191457415120417840411389235 | 1200x3 – 144x2 – 12x + 1 | [8] | |
12 | 26 | 0.07142857142857142857142857142858 | 14x – 1 | [8] | |
12 | 27 | 0.07476492618150171900046741798712 | |||
12 | 28 | 0.08259220626797780620169942560462 | |||
12 | 29 | 0.08434800930948543817609523562697 | 1 | 496x4 + 92x3 – 57x2 – 8x + 1 | |
12 | 30 | 0.08914660143341378396187447349699 | 2 | 3856x4 + 1456x3 + 100x2 – 12x – 1 | |
12 | 31 | 0.09870409124008622425851938202713 | 2 | 863x2 + 6x – 9 | |
12 | 32 | 0.09870409124008622425851938202713 | 2 | 863x2 + 6x – 9 | |
13 | 27 | 0.05707252378225744920008530386950 | 1573x3 – 169x2 – 13x + 1 | [8] | |
13 | 28 | 0.06666666666666666666666666666667 | 15x – 1 | [8] | |
13 | 29 | 0.06809860947842661920489059247239 | 2576x4 – 640x3 – 184x2 + 1 | ||
13 | 30 | 0.07171403472725743246612172136228 | 55x2 + 10x – 1 | ||
13 | 31 | 0.07171403472725743246612172136228 | 55x2 + 10x – 1 | ||
13 | 32 | 0.07171403472725743246612172136228 | 55x2 + 10x – 1 | [27] | |
14 | 29 | 0.05342698734150995608695304765938 | 2016x3 – 196x2 – 14x + 1 | [8] | |
14 | 30 | 0.06250000000000000000000000000000 | 16x – 1 | ||
14 | 31 | 0.06758677109098814555067432244432 | |||
14 | 32 | 0.07143090184092342423297534986236 | |||
15 | 31 | 0.05023712037295819182915747580845 | 2535x3 – 225x2 – 15x + 1 | [8] | |
15 | 32 | 0.05890080848833338725817955269602 |
Aside from four cases (12 points in 3 dimensions, 20 or 24 points in 4 dimensions, and 32 points in 6 dimensions), the spherical codes listed above never have antipodal symmetry. The case of N pairs of antipodal points is equivalent to maximizing the minimal angle between N lines through the origin, i.e., optimizing a real projective code. For comparison, here is a table of records for N ≤ 16, which omits the trivial case of up to n orthogonal lines in n dimensions and has a plot available:
Table of real projective codes (N lines in n dimensions)
n | N | Cosine of minimal angle | Rattlers | Minimal polynomial | References |
---|---|---|---|---|---|
∗ 3 | 4 | 0.33333333333333333333333333333334 | 3x – 1 | [10, 34] | |
∗ 3 | 5 | 0.44721359549995793928183473374626 | 5x2 – 1 | [10] | |
∗ 3 | 6 | 0.44721359549995793928183473374626 | 5x2 – 1 | [10, 34] | |
∗ 3 | 7 | 0.57735026918962576450914878050196 | 3x2 – 1 | [10] | |
∗ 3 | 8 | 0.64758897873417862734156471888316 | degree 9 | [6, 20] | |
3 | 9 | 0.66936231928109901015298754554435 | 13x3 + x2 – 5x – 1 | [6] | |
3 | 10 | 0.68614066163450716496265286705474 | 1 | 2x2 + 3x – 3 | [6] |
3 | 11 | 0.71443449739467850485464566840562 | degree 6 | [6] | |
3 | 12 | 0.74452083820543412912980911157876 | 17x2 – 14x + 1 | [6] | |
3 | 13 | 0.76813737631458482294245319830313 | x5 + 13x4 + 42x3 + 42x2 – 75x + 9 | [6] | |
3 | 14 | 0.78062219278523604521158858789220 | degree 111 | [6] | |
3 | 15 | 0.78655857113558130772653953634602 | degree 12 | [6] | |
3 | 16 | 0.79465447229176612295553092832760 | 45x4 – 30x2 + 1 | [6] | |
∗ 4 | 5 | 0.25000000000000000000000000000000 | 4x – 1 | [34] | |
∗ 4 | 6 | 0.33333333333333333333333333333334 | 3x – 1 | [6, 11, 4] | |
4 | 7 | 0.39038820320220756872767623199676 | 4x2 + x – 1 | [6] | |
4 | 8 | 0.41421356237309504880168872420970 | x2 + 2x – 1 | [6] | |
4 | 9 | 0.43425854591066488218653687791175 | 3x2 + x – 1 | [6] | |
4 | 10 | 0.43425854591066488218653687791175 | 3x2 + x – 1 | [6] | |
∗ 4 | 11 | 0.50000000000000000000000000000000 | 2x – 1 | [6] | |
∗ 4 | 12 | 0.50000000000000000000000000000000 | 2x – 1 | [25, 6] | |
4 | 13 | 0.56691527068179906330992487897558 | 1 | 11x2 – 8x + 1 | [6] |
4 | 14 | 0.59007651527101322282935291615497 | degree 14 | [6] | |
4 | 15 | 0.60873941168052296928961201448826 | degree 10 | [6] | |
4 | 16 | 0.61803398874989484820458683436564 | 1 | x2 + x – 1 | [6] |
∗ 5 | 6 | 0.20000000000000000000000000000000 | 5x – 1 | [34] | |
∗ 5 | 7 | 0.28620826421558111221120097995740 | x3 – 9x2 – x + 1 | [6, 19] | |
5 | 8 | 0.32880251120576348843092644566680 | degree 7 | [6] | |
5 | 9 | 0.33333333333333333333333333333334 | 3x – 1 | [6] | |
∗ 5 | 10 | 0.33333333333333333333333333333334 | 3x – 1 | [17, 34] | |
5 | 11 | 0.38664119885581345037571121632975 | 1 | 29x5 + 43x4 – 38x3 – 10x2 + 9x – 1 | [6] |
5 | 12 | 0.39038820320220756872767623199676 | 4x2 + x – 1 | [6] | |
5 | 13 | 0.41100667568798964514107873257679 | degree 7 | [6] | |
5 | 14 | 0.41113055081625813204082106348155 | 49x4 – 26x3 – 16x2 + 10x – 1 | [6] | |
5 | 15 | 0.41421356237309504880168872420970 | x2 + 2x – 1 | [6] | |
∗ 5 | 16 | 0.44721359549995793928183473374626 | 5x2 – 1 | [6] | |
∗ 6 | 7 | 0.16666666666666666666666666666667 | 6x – 1 | [34] | |
∗ 6 | 8 | 0.24094310926034164895054811006593 | degree 6 | [6, 19] | |
6 | 9 | 0.27825804947907715858960015942485 | degree 7 | [6] | |
6 | 10 | 0.28077640640441513745535246399352 | 2x2 + 3x – 1 | [6] | |
6 | 11 | 0.31622776601683793319988935444328 | 10x2 – 1 | [6] | |
6 | 12 | 0.31622776601683793319988935444328 | 10x2 – 1 | [6] | |
6 | 13 | 0.33333333333333333333333333333334 | 1 | 3x – 1 | [6] |
6 | 14 | 0.33333333333333333333333333333334 | 3x – 1 | [6] | |
6 | 15 | 0.33333333333333333333333333333334 | 3x – 1 | [6] | |
∗ 6 | 16 | 0.33333333333333333333333333333334 | 3x – 1 | [17, 34] | |
∗ 7 | 8 | 0.14285714285714285714285714285715 | 7x – 1 | [34] | |
∗ 7 | 9 | 0.20000000000000000000000000000000 | 5x – 1 | [6, 4] | |
7 | 10 | 0.23606797749978969640917366873128 | x2 + 4x – 1 | [6] | |
7 | 11 | 0.25851694486106515028856211348079 | 76x5 – 44x4 – 31x3 + 13x2 + 3x – 1 | [6] | |
7 | 12 | 0.27272727272727272727272727272728 | 11x – 3 | [6] | |
7 | 13 | 0.27735009811261456100917086672850 | 13x2 – 1 | [6] | |
∗ 7 | 14 | 0.27735009811261456100917086672850 | 13x2 – 1 | [17, 34] | |
7 | 15 | 0.31618306625810221110773896871360 | degree 8 | [6] | |
7 | 16 | 0.32579705421400141760181445829268 | |||
∗ 8 | 9 | 0.12500000000000000000000000000000 | 8x – 1 | [34] | |
8 | 10 | 0.18274399763155681014833407039277 | 19x2 + 2x – 1 | [6] | |
8 | 11 | 0.21013725661767148165690452663564 | degree 19 | ||
8 | 12 | 0.23166247903553998491149327366707 | 10x2 + 2x – 1 | [6] | |
8 | 13 | 0.23906104311673605013508516180858 | |||
8 | 14 | 0.25822993164268312301618267398557 | degree 11 | [6] | |
8 | 15 | 0.26996519072292358265868340141656 | |||
8 | 16 | 0.27395147170889821586916164817386 | 9x4 – 14x2 + 1 | [6] | |
∗ 9 | 10 | 0.11111111111111111111111111111112 | 9x – 1 | [34] | |
9 | 11 | 0.16297443277324822659060918082968 | degree 6 | [6] | |
∗ 9 | 12 | 0.18274399763155681014833407039277 | 19x2 + 2x – 1 | [6, 4] | |
9 | 13 | 0.20887624097518068198468149347108 | |||
9 | 14 | 0.22089903147727419339287508022539 | degree 8 | [6] | |
9 | 15 | 0.23330570880288229977333738574545 | |||
9 | 16 | 0.24253562503633297351890646211613 | 17x2 – 1 | [6] | |
∗ 10 | 11 | 0.10000000000000000000000000000000 | 10x – 1 | [34] | |
∗ 10 | 12 | 0.14285714285714285714285714285715 | 7x – 1 | [6, 4] | |
10 | 13 | 0.17273960369212825269887122191439 | 158x5 + 349x4 + 28x3 – 38x2 – 2x + 1 | [6] | |
10 | 14 | 0.19054473957762242321193235020642 | degree 84 | ||
10 | 15 | 0.19472111361678885284305008159890 | 6x3 – 7x2 – 4x + 1 | [6] | |
∗ 10 | 16 | 0.20000000000000000000000000000000 | 5x – 1 | [17, 34] | |
∗ 11 | 12 | 0.09090909090909090909090909090910 | 11x – 1 | [34] | |
11 | 13 | 0.13498920127459953264187217399185 | 89x5 – 103x4 – 138x3 – 42x2 + x + 1 | [6] | |
11 | 14 | 0.15777454145867061988851120512478 | x3 + 21x2 + 3x – 1 | [6] | |
11 | 15 | 0.17427391850565105193695154876787 | degree 102 | ||
11 | 16 | 0.17839458616266547701324680749673 | 9x2 + 4x – 1 | [6] | |
∗ 12 | 13 | 0.08333333333333333333333333333334 | 12x – 1 | [34] | |
12 | 14 | 0.12295337815830641009836335476174 | degree 6 | ||
12 | 15 | 0.14620609896519678926426427287249 | degree 6 | ||
12 | 16 | 0.16133398878131368888992070727444 | degree 8 | [6] | |
∗ 13 | 14 | 0.07692307692307692307692307692308 | 13x – 1 | [34] | |
∗ 13 | 15 | 0.11111111111111111111111111111112 | 9x – 1 | [6, 4] | |
13 | 16 | 0.13499680245071983220881421251035 | degree 8 | [6] | |
∗ 14 | 15 | 0.07142857142857142857142857142858 | 14x – 1 | [34] | |
14 | 16 | 0.10643341651544703618977147422985 | degree 5 | [6] | |
∗ 15 | 16 | 0.06666666666666666666666666666667 | 15x – 1 | [34] |
References
- P. G. Adams, A numerical approach to Tamme’s problem in Euclidean n-space, Master of Science thesis, Oregon State University, 1997, https://hdl.handle.net/1957/33911.
- C. Bachoc and F. Vallentin, Optimality and uniqueness of the (4,10,1/6) spherical code, J. Combin. Theory Ser. A 116 (2009), 195–204, doi:10.1016/j.jcta.2008.05.001.
- J. Buddenhagen and D. A. Kottwitz, Multiplicity and symmetry breaking in (conjectured) densest packings of congruent circles on a circle, undated preprint. [I obtained a copy in 2004 and have seen it cited with a date of 2001.]
- B. Bukh and C. Cox, Nearly orthogonal vectors and small antipodal spherical codes, Israel J. Math. 238 (2020), 359–388, doi:10.1007/s11856-020-2027-7.
- B. W. Clare and D. L. Kepert, The closest packing of equal circles on a sphere, Proc. Roy. Soc. London Ser. A 405 (1986), 329–344, doi:10.1098/rspa.1986.0056.
- J. H. Conway, R. H. Hardin, and N. J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math. 5 (1996), 139–159, https://projecteuclid.org/euclid.em/1047565645.
- L. Danzer, Finite point-sets on S2 with minimum distance as large as possible, Discrete Math. 60 (1986), 3–66, doi:10.1016/0012-365X(86)90002-6.
- T. Ericson and V. Zinoviev, Codes on Euclidean spheres, North-Holland Mathematical Library 63, North-Holland Publishing Co., Amsterdam, 2001.
- L. Fejes [Tóth], Über eine Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems, Jber. Deutsch. Math.-Verein. 53 (1943), 66–68.
- L. Fejes Tóth, Distribution of points in the elliptic plane, Acta Math. Acad. Sci. Hungar. 16 (1965), 437–440, doi:10.1007/BF01904849.
- M. Fickus, J. Jasper, and D. G. Mixon, Packings in real projective spaces, SIAM J. Appl. Algebra Geom. 2 (2018), 377–409, doi:10.1137/17M1137528.
- T. Gosset, On the regular and semi-regular figures in space of n dimensions, Messenger Math. 29 (1900), 43–48.
- D. A. Kottwitz, The densest packing of equal circles on a sphere, Acta Cryst. Sect. A 47 (1991), 158–165, doi:10.1107/S0108767390011370.
- D. de Laat, N. Leijenhorst, and W. H. H. de Muinck Keizer, Optimality and uniqueness of the D4 root system, preprint, 2024, arXiv:2404.18794.
- D. E. Lazić, V. Šenk, and I. Šeškar, Arrangements of points on a sphere which maximize the least distance, Bull. Appl. Math. (Technical University Budapest) 47 (1987), 7–21.
- V. I. Levenšteĭn, On bounds for packings in n-dimensional Euclidean space (Russian), Dokl. Akad. Nauk SSSR 245 (1979), 1299–1303; English translation in Soviet Math. Dokl. 20 (1979), 417–421.
- J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Indag. Math. 28 (1966), 335–348, https://research.tue.nl/en/publications/equilateral-point-sets-in-elliptic-geometry.
- A. L. Mackay, The packing of three-dimensional spheres on the surface of a four-dimensional hypersphere, J. Phys. A 13 (1980), 3373–3379, doi:10.1088/0305-4470/13/11/011.
- D. G. Mixon and H. Parshall, Globally optimizing small codes in real projective spaces, SIAM J. Discrete Math. 35 (2021), 234–249, doi:10.1137/19M1307895.
- D. G. Mixon and H. Parshall, The optimal packing of eight points in the real projective plane, Exp. Math. 31 (2022), 474–485, doi:10.1080/10586458.2019.1641767.
- O. R. Musin and A. S. Tarasov, The strong thirteen spheres problem, Discrete Comput. Geom. 48 (2012), 128–141, doi:10.1007/s00454-011-9392-2.
- O. R. Musin and A. S. Tarasov, The Tammes problem for N=14, Exp. Math. 24 (2015), 460–468, doi:10.1080/10586458.2015.1022842.
- R. A. Rankin, The closest packing of spherical caps in n dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139–144, doi:10.1017/S2040618500033219.
- R. M. Robinson, Arrangements of 24 points on a sphere, Math. Ann. 144 (1961), 17–48, doi:10.1007/BF01396539.
- L. Schläfli, Theorie der vielfachen Kontinuität [1852], Denkschriften der Schweizerischen naturforschenden Gesellschaft, vol. 38, J. H. Graf, Bern, 1901.
- K. Schütte and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz?, Math. Ann. 123 (1951), 96–124, doi:10.1007/BF02054944.
- N. J. A. Sloane, with the collaboration of R. H. Hardin, W. D. Smith, and others, Tables of spherical codes, 1994, http://neilsloane.com/packings.
- J. Strohmajer, Über die Verteilung von Punkten auf der Kugel, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 6 (1963), 49–53.
- P. M. L. Tammes, On the origin of number and arrangement of the places of exit on the surface of pollen-grains, Recueil des travaux botaniques néerlandais 27 (1930), no. 1, 1–84, https://natuurtijdschriften.nl/pub/552640.
- T. Tarnai and Zs. Gáspár, Improved packing of equal circles on a sphere and rigidity of its graph, Math. Proc. Cambridge Philos. Soc. 93 (1983), 191–218, doi:10.1017/S0305004100060485.
- T. Tarnai and Zs. Gáspár, Arrangement of 23 points on a sphere (on a conjecture of R. M. Robinson), Proc. Roy. Soc. London Ser. A 433 (1991), 257–267, doi:10.1098/rspa.1991.0046.
- B. L. van der Waerden, Punkte auf der Kugel. Drei Zusätze, Math. Ann. 125 (1952), 213–222, doi:10.1007/BF01343118.
- J. Wang, Finding and investigating exact spherical codes, Experiment. Math. 18 (2009), 249–256, https://projecteuclid.org/euclid.em/1259158434.
- L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory 20 (1974), 397–399, doi:10.1109/TIT.1974.1055219.